翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

circle packing in an equilateral triangle : ウィキペディア英語版
circle packing in an equilateral triangle
Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack ''n'' unit circles into the smallest possible equilateral triangle. Optimal solutions are known for ''n'' < 13 and for any triangular number of circles, and conjectures are available for ''n'' < 28.〔.〕〔.〕〔.〕
A conjecture of Paul Erdős and Norman Oler states that, if is a triangular number, then the optimal packings of and of circles have the same side length: that is, according to the conjecture, an optimal packing for circles can be found by removing any single circle from the optimal hexagonal packing of circles.〔.〕 This conjecture is now known to be true for .〔.〕
Minimum solutions for the side length of the triangle:〔
A closely related problem is to cover the equilateral triangle with a given number of circles, having as small a radius as possible.〔.〕
==See also==

*Circle packing in an isosceles right triangle
*Malfatti circles, a construction giving the optimal solution for three circles in an equilateral triangle

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「circle packing in an equilateral triangle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.